Persistence and phase synchronisation properties of fixational eye movements

نویسندگان

  • S. Moshel
  • A. Z. Zivotofsky
  • L. Jin-Rong
  • R. Engbert
  • J. Kurths
  • R. Kliegl
  • S. Havlin
چکیده

When we fixate our gaze on a stable object, our eyes move continuously with extremely small involuntary and autonomic movements, that even we are unaware of during their occurrence. One of the roles of these fixational eye movements is to prevent the adaptation of the visual system to continuous illumination and inhibit fading of the image. These random, small movements are restricted at long time scales so as to keep the target at the centre of the field of view. In addition, the synchronisation properties between both eyes are related to binocular coordination in order to provide stereopsis. We investigated the roles of different time scale behaviours, especially how they are expressed in the different spatial directions (vertical versus horizontal). We also tested the synchronisation between both eyes. Results show different scaling behaviour between horizontal and vertical movements. When the small ballistic movements, i.e., microsaccades, are removed, the scaling behaviour in both axes becomes similar. Our findings suggest that microsaccades enhance the persistence at short time scales mostly in the horizontal component and much less in the vertical component. We also applied the phase synchronisation decay method to study the synchronisation between six combinations of binocular fixational eye movement components. We found that the vertical-vertical components of right and left eyes are significantly more synchronised than the horizontal-horizontal components. These differences may be due to the need for continuously moving the eyes in the horizontal plane in order to match the stereoscopic image for different viewing distances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capture of fixation by rotational flow; a deterministic hypothesis regarding scaling and stochasticity in fixational eye movements

Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations in the persistent neural activity of neural integrators in the oculomotor brainstem, which integrate sequences of transient saccadic velocity signals into a short term memory of eye position. Despite intensive researc...

متن کامل

Abnormal Fixational Eye Movements in Amblyopia

PURPOSE Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. METHODS Thirty-six pediatric su...

متن کامل

The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal

One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the 'complex' visual stimulus. We demonstrated that the fractal t...

متن کامل

An integrated model of fixational eye movements and microsaccades.

When we fixate a stationary target, our eyes generate miniature (or fixational) eye movements involuntarily. These fixational eye movements are classified as slow components (physiological drift, tremor) and microsaccades, which represent rapid, small-amplitude movements. Here we propose an integrated mathematical model for the generation of slow fixational eye movements and microsaccades. The ...

متن کامل

Fixational eye movements across vertebrates: comparative dynamics, physiology, and perception.

During visual fixation, human eyes are never still. Instead, they constantly produce involuntary "fixational eye movements." Fixational eye movements overcome neural adaptation and prevent visual fading: thus they are an important tool to understand how the brain makes the environment visible. The last decade has seen a growing interest in the analysis of fixational eye movements in humans and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008